5,273 research outputs found

    Interpretations of galactic center gamma-ray excess confronting the PandaX-II constraints on dark matter-neutron spin-dependent scatterings in the NMSSM

    Full text link
    The Weakly Interacting Massive Particle (WIMP) has been one of the most attractive candidates for Dark Matter (DM), and the lightest neutralino (χ~10\widetilde{\chi}^0_1) in the Next-to-Minimal Supersymmetric Standard Model (NMSSM) is an interesting realization of WIMP. The Galactic Center Excess (GCE) can be explained by WIMP DM annihilations in the sky. In this work we consider the Z3Z_3-NMSSM where the singlet SS and Singlino S~0\widetilde{S}^0 components play important roles in the Higgs and DM sector. Guided by our analytical arguments, we perform a numerical scan over the NMSSM parameter space for the GCE explanation by considering various observables such as the Standard Model (SM) Higgs data measured by the ATLAS and CMS experiments, and the BB-physics observables BR(BsXsγ)BR(B_s\rightarrow X_s\gamma) and BR(Bsμ+μ)BR(B_s\rightarrow \mu^+\mu^-). We find that the correlation between the coupling CA1bbˉC_{A_1 b\bar{b}} in σbbˉv0\langle \sigma_{b\bar{b}} v \rangle _{0} and the coupling CZχ~10χ~10C_{Z \widetilde{\chi}^0_1 \widetilde{\chi}^0_1} in DM-neutron Spin Dependent (SD) scattering rate σχ~10NSD\sigma^{SD}_{\widetilde{\chi}^0_1-N} makes all samples we obtain for GCE explanation get excluded by the PandaX-II results. Although the DM resonant annihilation scenarios may be beyond the reach of our analytical approximations and scan strategy, the aforementioned correlation can be a reasonable motivation for future experiments such as PandaX-nT to further test the NMSSM interpretation of GCE.Comment: 11 pages, 4 figures, meeting the published version by EPJ

    NONCONTACT DIFFUSE CORRELATION TOMOGRAPHY OF BREAST TUMOR

    Get PDF
    Since aggressive cancers are frequently hypermetabolic with angiogenic vessels, quantification of blood flow (BF) can be vital for cancer diagnosis. Our laboratory has developed a noncontact diffuse correlation tomography (ncDCT) system for 3-D imaging of BF distribution in deep tissues (up to centimeters). The ncDCT system employs two sets of optical lenses to project source and detector fibers respectively onto the tissue surface, and applies finite element framework to model light transportation in complex tissue geometries. This thesis reports our first step to adapt the ncDCT system for 3-D imaging of BF contrasts in human breast tumors. A commercial 3-D camera was used to obtain breast surface geometry which was then converted to a solid volume mesh. An ncDCT probe scanned over a region of interest on the breast mesh surface and the measured boundary data were used for 3-D image reconstruction of BF distribution. This technique was tested with computer simulations and in 28 patients with breast tumors. Results from computer simulations suggest that relatively high accuracy can be achieved when the entire tumor was within the sensitive region of diffuse light. Image reconstruction with a priori knowledge of the tumor volume and location can significantly improve the accuracy in recovery of tumor BF contrasts. In vivo ncDCT imaging results from the majority of breast tumors showed higher BF contrasts in the tumor regions compared to the surrounding tissues. Reconstructed tumor depths and dimensions matched ultrasound imaging results when the tumors were within the sensitive region of light propagation. The results demonstrate that ncDCT system has the potential to image BF distributions in soft and vulnerable tissues without distorting tissue hemodynamics. In addition to this primary study, detector fibers with different modes (i.e., single-mode, few-mode, multimode) for photon collection were experimentally explored to improve the signal-to-noise ratio of diffuse correlation spectroscopy flow-oximeter measurements

    A 14-mW PLL-less receiver in 0.18-μm CMOS for Chinese electronic toll collection standard

    Get PDF
    This is the accepted manuscript version of the following article: Xiaofeng He, et al., “A 14-mW PLL-less receiver in 0.18-μm CMOS for Chinese electronic toll collection standard”, IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 61(10): 763-767, August 2014. The final published version is available at: http://ieeexplore.ieee.org/document/6871304/ © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The design of a 14-mW receiver without phase-locked loop for the Chinese electronic toll collection (ETC) system in a standard 0.18-μm CMOS process is presented in this brief. Since the previously published work was mainly based on vehicle-powered systems, low power consumption was not the primary goal of such a system. In contrast, the presented system is designed for a battery-powered system. Utilizing the presented receiver architecture, the entire receiver only consumes 7.8 mA, at the supply voltage of 1.8 V, which indicates a power saving of at least 38% compared with other state-of-the-art designs for the same application. To verify the performance, the bit error rate is measured to be better than 10-6, which well satisfies the Chinese ETC standard. Moreover, the sensitivity of the designed receiver can be readjusted to -50 dBm, which is required by the standard.Peer reviewe

    3-(3-Chloro­phen­yl)-N-phenyl­oxirane-2-carboxamide

    Get PDF
    There are two independent mol­ecules in the asymmetric unit of the title compound, C15H12ClN2O2. In each mol­ecule, the two benzene rings adopt a cis configuration with respect to the ep­oxy ring. The dihedral angles between the ep­oxy ring and chloro­phenyl rings are essentially identical in the two mol­ecules [62.50 (9) and 62.67 (9)°]. Inter­molecualar N—H⋯O and C—H⋯O hydrogen bonding is present in the crystal structure
    corecore